edexcel 츷

Mark Scheme (Results)

January 2013

GCE Chemistry (6CH04) Paper 01
General Principles of Chemistry I Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code US034336
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Mark
1(a)	A	1
Question Number	Correct Answer	Mark
1(b)	C	1
Question Number	Correct Answer	Mark
2	B	1
Question Number	Correct Answer	Mark
3	D	1
Question Number	Correct Answer	Mark
4	D	1
Question Number	Correct Answer	Mark
5	B	1
Question Number	Correct Answer	Mark
6(a)	C	1
Question Number	Correct Answer	Mark
6(b)	B	1
Question Number	Correct Answer	Mark
6(c)	D	1
Question Number	Correct Answer	Mark
7	A	1
Question Number	Correct Answer	Mark
8	C	1
Question Number	Correct Answer	Mark
9	B	1

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	C	$\mathbf{1}$
Question Number Correct Answer Mark $\mathbf{1 1}$ D $\mathbf{1}$		

Question Number	Correct Answer	Mark
$\mathbf{1 2 (a)}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2 (b)}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2 (c)}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2 (d)}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	A	$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a)}$	(It has) three (moles of) COOH groups / three (moles of) carboxylic acid groups / three (moles of) protons /three (moles of) H^{+}/it is tribasic / three acid groups/ three (moles of) replaceable hydrogens/triprotic ALLOW Three acid groups	'carbonyl'/'carboxylate'	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
15(b)(i)	FI RST, CHECK THE FI NAL ANSWER I \mathbf{F} answer $=+546\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ award 2 marks " 546 " ($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$) scores (1) as sign omitted) $\begin{align*} &\left(\Delta \mathrm{S}_{\text {system }}^{\ominus}=\right.)[200.5+(3 \times 213.6)+(3 \\ &\times 69.9)] \\ &-[199.9+(3 \times 101.7)] \tag{1}\\ &= {[+1051]-[+505] } \\ &=+546\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{align*}$ Allow $\mathbf{+} 0.546 \mathbf{k J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}$ 2nd mark is CQ on entropy values used for example EITHER Omission of factor of $x 3$ for some or all substances in the equation OR The use of one incorrect entropy value(s) from the data book OR One missing value Note If two or more of the above three errors are made together, (0) awarded. I GNORE sf except 1 sf	I ncorrect units (no 2nd mark)	2

Question Number	Acceptable Answers	Reject	Mark
15(b)(ii)	First mark Gas formed (from solid) OR Liquid formed (from solid) OR Gas and liquid formed (from solid) Second mark EITHER More moles of product than reactants / more moles formed OR 4 mol (of reactants) to 7 mol (of products) OR 4 'molecules' to 7 'molecules' NOTE: If specific numbers are stated, these must be correct (ie $4 \rightarrow 7$) OR Increase in disorder / increase in ways of arranging particles IGNORE ‘entropy increases’ NOTE: Both points may be made in the same sentence	J ust 'more product' / 'more particles formed' 2 substances going to 3 substances	2

Question Number	Acceptable Answers	Reject	Mark
15(b) (iii)	$\begin{align*} \left(\Delta S_{\text {surroundings }}^{\theta}\right. & =) \frac{-\Delta H}{T} O R \frac{-70000}{298} \\ & =-234.8993289 \tag{1}\\ & =-235 \mathbf{J ~ m o l}^{-\mathbf{1}} \mathbf{K}^{-1} \tag{1} \end{align*}$ OR $\left(\Delta S_{\text {surroundings }}^{\ominus}=\right) \frac{-\Delta H}{T} \text { OR } \frac{-70}{298}$ $\begin{equation*} =-0.235 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{equation*}$ I GNORE sf except 1 sf NOTE: Correct units are required for the award of the second mark +235 with units scores	Incorrect rounding (e.g. -234 / -234.89) no 2nd mark +235 with no units ($\mathbf{0}$) overall	2

Question Number	Acceptable Answers	Reject	Mark
15(b)(iv)	$\begin{aligned} \left(\Delta \mathrm{S}_{\text {total }}^{\theta}\right. & \left.=\Delta \mathrm{S}_{\text {system }}^{\theta}+\Delta \mathrm{S}_{\text {surroundings }}^{\theta}\right) \\ & =(+546)+(-235) \\ & =(+) 311\left(\mathrm{~m} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ \mathrm{OR} & =(+) 0.311 \mathbf{~ k J} \mathbf{m o l}^{-1} \mathbf{K}^{-\mathbf{1}} \\ \mathrm{CQ} \text { on (i) } & \text { and (iii) } \end{aligned}$ I GNORE sf except 1 sf	Incorrect units	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (b) (v)}$	Positive so feasible / spontaneous / will occur / reaction goes / reacts (at 298 K)		$\mathbf{1}$
	NOTE: LOOK BACK at answer to (b)(iv) IF answer to (b)(iv) has a positive sign (the + sign can be stated or implied) THEN ALLOW J UST feasible / spontaneous / will occur / reaction goes / reacts (at 298 K)		
Mark CQ on sign of answer to (iv)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i)}$	$\mathrm{K}_{\mathrm{w}} \quad=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]$ $\mathrm{OR} \quad$ Inclusion of $\left[\mathrm{H}_{2} \mathrm{O}\right]$ $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]$ State symbols are not required IGNORE any incorrect state symbols		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
16(a)(ii)	FI RST, CHECK THE FI NAL ANSWER IF answer $\mathrm{pH}=11.875 / 11.88 /$ 11.9/12 award $\mathbf{2}$ marks I GNORE sf except 1 sf $\begin{align*} {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} } & =\frac{1.00 \times 10^{-14}}{0.00750} \\ = & 1.3333 \times 10^{-12} \\ = & 1.33 \times 10^{-12} \tag{1}\\ & \left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ ALLOW first mark for just $\begin{align*} & {\left[\begin{array}{l} {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{}} \\ {\left[\mathrm{OH}^{-}\right]} \end{array}\right.} \\ & \begin{aligned} \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] & =11.875 \\ & =11.88 / 11.9 \end{aligned} \end{align*}$ OR $\begin{align*} & \mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=2.12 \tag{1}\\ & \mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH} \\ & \mathrm{pH}=11.88 / 11.9 \tag{1} \end{align*}$ Second mark only awarded CQ if pH between 8 and 14		2

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 6 (c) (i)}$	(Weak) dissociates / ionizes to a small extent		2		
	OR dissociate / ionizes partially OR dissociates / ionizes incompletely OR does not fully dissociate / ionize OR forms an equilibrium when reacted with water	'not easily dissociated'		\quad	(1)
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (c) (i i)}$	$\left(\mathrm{K}_{\mathrm{a}}=\right)$$\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}^{+}\right]$ $[\mathrm{HCOOH}]$	$\left(\mathrm{K}_{\mathrm{a}}=\right) \quad\left[\mathrm{H}^{+}\right]^{2}$ $\left[\mathrm{HCOOH}^{2}\right]$	$\mathbf{1}$
State symbols are NOT required IGNORE any incorrect state symbols			

Question Number	Acceptable Answers	Reject	Mark
16(c)(iii)	I GNORE sf except 1 sf THROUGHOUT FI RST, CHECK THE FI NAL ANSWER IF answer $\mathrm{K}_{\mathrm{a}}=1.59 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award the first two $\mathbf{2}$ marks $\begin{align*} {\left[\mathrm{H}^{+}\right](} & \left.=10^{-\mathrm{pH}}=10^{-3.01}\right) \\ & =9.77 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ $\mathrm{K}_{\mathrm{a}} \quad=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}$ $\mathrm{K}_{\mathrm{a}} \quad=\frac{\left(9.77 \times 10^{-4}\right)^{2}}{6.00 \times 10^{-3}}$ $\begin{equation*} =1.59 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Assumption 1 $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$ OR no H^{+}from the (ionization of) water OR H^{+}only from the acid Assumption 2 Ionization of the (weak) acid is negligible / very small / insignificant OR $[\mathrm{HCOOH}]_{\text {initial }}-x=[\mathrm{HCOOH}]_{\text {eqm }}$ OR $[\mathrm{HCOOH}]_{\text {eqm }}=[\mathrm{HCOOH}]_{\text {initial }}$ OR $[\mathrm{HCOOH}]_{\text {eqm }}=6.00 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ OR $\left[\mathrm{H}^{+}\right] \ll$ [HA] Assumptions can be in either order	If incorrect units max 1 Just 'partial' / 'incomplete' Or ' no dissociation'	4

$\begin{aligned} & 16(\mathrm{c})(\mathrm{iii}) \\ & \text { cont'd } \end{aligned}$	OR $\begin{align*} {\left[\mathrm{H}^{+}\right](=} & \left.10^{-\mathrm{pH}}=10^{-3.01}\right) \\ & =9.77 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & =\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]} \tag{1}\\ \mathrm{K}_{\mathrm{a}} \quad & \frac{\left(9.77 \times 10^{-4}\right)^{2}}{\left(6.00 \times 10^{-3}-9.77 \times 10^{-4}\right)} \\ \mathrm{K}_{\mathrm{a}} \quad & =1.90 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ Assumption $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$ OR no $\left[\mathrm{H}^{+}\right]$from the (ionization of) water OR H^{+}only from the acid Ignore references to constant temperature

Question Number	Acceptable Answers	Reject	Mark
17(a)(i)	$\left(\mathrm{K}_{\mathrm{C}}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{Ol}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]}$ ALLOW $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ State symbols are not required IGNORE any incorrect state symbols		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (\text { iii) }}$	Units cancel OR same number of moles/same number of molecules on each side OR volume / V cancels	Concentrations are the same	$\mathbf{1}$
	Ignore statements such as 'concentrations cancel' 'products and reactants cancel' 'same number of products as reactants'		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i v)}$	$\mathrm{K}_{\mathrm{c}}=\frac{(0.20) / \mathrm{V} \times(0.35) / \mathrm{V}}{(0.20) / \mathrm{V} \times(0.10) / \mathrm{V}}$$3.5 / 3.50$ Correct answer with or without working scores 1 Ignore omission of V TE from values in (ii) table	$\mathrm{K}_{\mathrm{c}}=4$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b)}$	•No effect on (position of) equilibrium		
	(1)	$\mathbf{2}$	
	•Rate (of attainment of equilibrium) is faster / equilibrium reached sooner (1)		

Question Number	Acceptable Answers	Reject	Mark
17(c)(i)	Bonds Broken $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ I gnore where these bonds are broken in the acid and alcohol molecules. ALLOW $\mathrm{C}-\mathrm{OH}$ for $\mathrm{C}-\mathrm{O}$ $\mathrm{CO}-\mathrm{H}$ for $\mathrm{O}-\mathrm{H}$ Bonds Made $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ Ignore where these bonds are made in the ester and water molecules. ALLOW C-OC for $\mathrm{C}-\mathrm{O}$ $\mathrm{H}-\mathrm{OH}$ for $\mathrm{O}-\mathrm{H}$ Marks can be awarded by annotating displayed or structural formulae. Comment: Max 1 if any other bonds mentioned	Two O-H bonds formed in $\mathrm{H}_{2} \mathrm{O}$ molecule ONLY C-O bond broken and made scores (0) overall	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c) (i i)}$	(C-O and O-H) bond enthalpies differ in: different environments /different molecules /different compounds OR Bond enthalpies/bond energies are average values	'Heat loss'	$\mathbf{1}$
ALLOw Bonds being broken and made are attached to different atoms			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (d) (i)}$	$\Delta \mathrm{S}_{\text {total }}=\mathrm{R}$ InK	log instead of In	$\mathbf{1}$
	Allow $\Delta \mathrm{S}_{\text {total }}$ is proportional to $\mathbf{\operatorname { l n } K}$	$\Delta \mathrm{S}_{\text {total }}$ is proportional to K / $\Delta \mathrm{S}_{\text {total }}$ increases as K increases	
	ALLOW K_{c} or K_{p} instead of K		

Question Number	Acceptable Answers	Reject	Mark
* 17(d) (ii)	First mark: ($\Delta \mathrm{H}=0 \mathrm{so}$) $\Delta \mathrm{S}_{\text {surroundings }}=0$ OR $\begin{equation*} -\frac{\Delta H}{T}=0 \tag{1} \end{equation*}$ IGNORE " $\Delta \mathrm{S}_{\text {surroundings }}$ stays the same". Second mark: (so) $\Delta \mathrm{S}_{\text {total }}$ does not change OR (so) $\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {system }}$ Third mark: (As $\Delta \mathrm{S}_{\text {total }}=\mathrm{R} \operatorname{lnK}$) \mathbf{K} does not alter ALLOW "it does not alter" to assume K does not alter. ALLOW use of K_{c} or K_{p} instead of K Each point is stand alone I GNORE justifications in terms of Le Chatelier's Principle NOTE: Can award max (1) (i.e. the third scoring point) if the effect on K stated follows on CQ from a change to $\boldsymbol{\Delta} \mathbf{S}_{\text {total }}$	If only mentions 'no effect on position of equilibrium' rather than the equilibrium constant	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (e) (i)}$	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}$	$\mathrm{CH}_{3} \mathrm{CClO/CH}_{2} \mathrm{CH}_{3} \mathrm{OH}$	$\mathbf{1}$
	Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ Allow $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ for $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ IGNORE missing or incorrect state symbols		

Question	Acceptable Answers	Reject	Mark					
Number				$	$	$\mathbf{1 7 (e) (i i)}$	O	
:---	:---	:---						
\mathbf{l}								

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (e) (\text { iii) }}$	H	NH or CH_{3}	$\mathbf{1}$
	IGNORE Other products of the reaction if the above structure has been correctly drawn.		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (f) (i)}$	$\left.\begin{array}{l}\left(\mathrm{CH}_{3} \mathrm{COOCH}\right. \\ 2\end{array} \mathrm{CH}_{3}+\mathrm{NaOH} \rightarrow\right)$		
$\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{OH}$ for ethanol	$\mathbf{1}$	
	Allow ionic representations of the sodium salt $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}$ IGNORE missing or incorrect state symbols		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (f) (i i)}$	(Reaction with sodium hydroxide is) not an equilibrium / not reversible / goes to completion OR Reverse argument for acid hydrolysis		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
18(a)(i)	- In experiments 1 and $2,\left[\mathrm{H}^{+}\right]$ doubles (whilst keeping other concentrations constant) and the rate quadruples / rate increases $\times 4$ - Second order (with respect to H^{+}) - In experiments 1 and $3,\left[\mathrm{Br}^{-}\right.$] doubles and $\left[\mathrm{BrO}_{3}^{-}\right.$] triples (with [H^{+}] constant) - Rate increases by 3×2 / rate increases $\times 6 /$ rate increases to 5.04×10^{-5} (then to 1.01×10^{-4} stated or implied) - First order with respect to Br^{-} OR - In experiments 2 and $3,\left[\mathrm{Br}^{-}\right]$ doubles and $\left[\mathrm{BrO}_{3}^{-}\right.$] triples and [H^{+}] halves - Rate increases by $3 \times 0.25 \times 2$ / rate increases x 1.5 - First order with respect to Br^{-}(1) Penalise OMI SSI ON of Experiment Numbers once only Mark each point independently		5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a) (i i)}$	Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$		$\mathbf{1}$
	Mark CQ on (a)(i) Allow "r" or "R" for "rate" in the rate equation. IGNORE If k appears to be in upper case.		

Question Number	Acceptable Answers	Reject	Mark
18(a)(iii)	IGNORE sf except 1 sf THROUGHOUT FI RST, CHECK THE FI NAL ANSWER IF answer $\mathrm{k}=1.49 \times 10^{-2} \mathbf{d m}^{9} \mathbf{~ m o l}^{-3} \mathbf{s}^{-1}$ award (3) marks $\begin{align*} \mathrm{k} & =\frac{\text { rate }}{\left[\mathrm{BrO}^{-}{ }_{3}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}} \\ & =\frac{1.68 \times 10^{-5}}{0.05 \times 0.25 \times(0.30)^{2}} \\ & =0.014933333 \tag{1}\\ & =0.0149 \\ & \mathbf{d m}^{\mathbf{9}} \mathbf{~ m o l}^{-\mathbf{3}} \mathbf{s}^{-1} / \mathbf{~ m o l}^{-\mathbf{3}} \mathbf{~ d m}^{\mathbf{9}} \mathbf{s}^{-1} \tag{1} \end{align*}$ IGNORE sf except 1 sf Mark CQ from (a)(ii) or, if no rate equation in (a)(ii), then any rate equation stated in (a)(iii) NOTE: IF the rate equation in (a)(ii) is given as Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$ $\begin{equation*} \mathrm{CQ} \mathrm{k}=3.73 \times 10^{-3} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \tag{3} \end{equation*}$ scores IF $\left[\mathrm{H}^{+}\right.$] is not squared in the correct rate equation: $\mathrm{k}=4.48 \times 10^{-3} \mathrm{dm}^{9} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}$ OR $\begin{equation*} \mathrm{k}=4.48 \times 10^{-3} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \text { scores } \tag{2} \end{equation*}$ ALLOW Correct answers derived from the data in the table for Experiment 2 or Experiment 3		3

Question Number	Acceptable Answers	Reject	Mark
18(b)	The number(s) (of particles) in the rate equation / rate-determining step do not match those in the equation for the reaction OR The chance of (simultaneous) collision of 12 particles is unlikely OR The chance of (simultaneous) collision of 4 particles is unlikely OR The chance of (simultaneous) collision of 3 reactants is unlikely ALLOW 'molecules’ / ‘substances’ for 'particles' NOTE ALLOW AS A CQ from (a)(ii) Br^{-}ions not in rate equation / Br^{-}ions not in rate-determining step / Zero order with respect to Br^{-}/ (Only) two reactants in the ratedetermining step / (only) two reactants in the rate-equation/ particles are in the equation (for the reaction) that are not in the rate equation		1

Question Number	Acceptable Answers	Reject	Mark
18(c)	REMEMBER TO SCROLL DOWN BELOW THE SPACE LEFT FOR A SKETCH-GRAPH TO SEE WHAT CANDIDATE HAS WRITTEN ON THE DOTTED LI NES - (Calculate) gradient (of tangent) ALLOW ‘slope’ for 'gradient’ - At $\mathrm{t}=0 /$ at the start / at the beginning / when reaction is at its fastest / at the origin Each mark is stand-alone NOTE: Answer may be annotated on a suitable sketch-graph I GNORE any sketch-graph that shows an increase in concentration with time MAX (1) if sketch-graph shows a decrease in the concentration of a reactant / Br_{2}	Answers relating to half-life score (0) overall If sketch-graph or comments suggest that gradient is measured at other than $t=0$ or at several values of t then max (1)	2

SECTION C

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	Correct empirical formula of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, with or without working, scores (2)		2

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	First mark: Any mention of 44 or of doubling $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ Second mark: Any mention of 88 in the context of the mass spectrum eg mentions 'molecular ion' / M^{+}/ heaviest peak / peak furthest to the right / annotation at 88 on the mass spectrum itself / highest $\frac{m}{z}$ value	88 obtained just by adding up the relative atomic masses in $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ scores (0) for 2nd scoring point	2

Question Number	Acceptable Answers	Reject	Mark
19(b)	(Peak at $3500 \mathrm{~cm}^{-1}$) $\mathbf{O} \mathbf{- H}$ Allow OH (Peak at $1700 \mathrm{~cm}^{-1}$) $\mathbf{C =}=\mathbf{0}$ Penalise extra extension bond on an otherwise correct answer once only $(\mathrm{eg}-\mathrm{O}-\mathrm{H} \text { and }-\mathrm{C}=\mathrm{O} \text { scores }(1))$ I GNORE any names for the bonds suggested even if incorrect	$\begin{equation*} -\mathrm{O}-\mathrm{H} /-\mathrm{OH} \tag{1} \end{equation*}$ $\begin{equation*} \mathrm{C}-\mathrm{O} /-\mathrm{C}=\mathrm{O} / \mathrm{CO} \tag{1} \end{equation*}$	2

Question Number	Acceptable Answers	Reject	Mark
19(c)(i)	First mark: (\mathbf{X} is neutral) so not a (carboxylic) acid I GNORE " \mathbf{X} doesn't have a charge as it is neutral" / " \mathbf{X} is not an alkali" / " \mathbf{X} is not a base" Second mark: (\mathbf{X} does not react with Tollens') so is not an aldehyde / is a ketone Third mark: (\mathbf{X} reacts with $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ so) is an alcohol /contains an OH (group) / contains $\mathrm{R}-\mathrm{OH}$ / contains hydroxyl (group) I GNORE 'not an acid' if this is deduced solely from the $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ information Fourth mark: a primary or a secondary (alcohol) both needed OR (\mathbf{X} is) not tertiary (alcohol) Mark each point separately NOTE: ' \mathbf{X} is a primary or a secondary alcohol' scores both the third and fourth marks ALLOW Correct formulae for the functional groups, instead of their names	\mathbf{X} is an aldehyde scores (0) for this scoring point / \mathbf{X} is not a ketone scores (0) for this scoring point	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c) (i i)}$	(primary or secondary) alcohol and ketone	Just ‘hydroxyl for 'alcohol' and/or ‘C=O/carbonyl' for ketone/	$\mathbf{1}$
	NOTE BOTH names are required here		

Question Number	Acceptable Answers	Reject	Mark
19(d)	MARKI NG ADVI CE Check answer for the suggested structure of X . If the correct structure is shown Mark answer according to the following. However if no structure for \mathbf{X} is shown or an incorrect structure for \mathbf{X} is proposed, mark answer according to "COMMENTS" scheme below MARKS CAN BE AWARDED FROM SUITABLY ANNOTATED FORMULAE FOR X. First mark: Four different H / hydrogen / proton environments Any five from following seven points: Either Application of the $(n+1)$ rule to peak J (which is a quartet / splits into four) or application of the $(n+1)$ rule peak \mathbf{M} (which is a doublet / splits into two) Any mention to explain no splitting for peak \mathbf{L} as there is no H is attached to the adjacent carbon Peak L $\left(\mathrm{CH}_{3}\right)$ next to $\mathrm{C}=\mathrm{O}$ Peak M $\left(\mathrm{CH}_{3}\right)$ next to CH Peak K OH Peak J (CH) next to CH_{3} Any one correct δ value quoted within ± 0.2 of the following chemical shifts: $1.4(\mathbf{M})$ or 2.2 (L) or $3.7(\mathbf{K})$ or 4.2 (J) (ppm)	J ust 'four different chemical environments' If any incorrect chemical shift OR A RANGE of chemical shifts is quoted, this scoring point is not available	7

COMMENT

Strategy for marking answers with an incorrect structure for \mathbf{X} or where no structure is suggested for X.
The maximum mark in such cases is FOUR OUT OF SEVEN or TWO OUT OF SEVEN IF NO STRUCTURE DRAWN (as second and fourth marks are not available)

Scoring points:
First mark:
States four different H / hydrogen / proton environments

Second mark:

Structure drawn for \mathbf{X} has exactly 4 hydrogen environments
Third mark:
Peak \mathbf{K} is due to OH

Fourth Mark:

Providing the structure drawn for X would produce ONE of these splits.
Any ONE of
Application of the $(\mathrm{n}+1)$ rule to peak to explain a peak which is a quartet splits into four or
Application of the $(\mathrm{n}+1)$ rule to peak to explain a peak which is a doublet / splits into two or
Application of the $(n+1)$ rule to peak to explain a peak which is a singlet due to a CH_{3} next to $\mathrm{C}=0$

SEE NEXT PAGE FOR MAXIMUM MARKS AVAILABLE FOR SOME LIKELY INCORRECT STRUCTURES FOR X

Max 3

Max 3

Max 2

Max 3

Max 2

Max 2

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US034336 J anuary 2013

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

